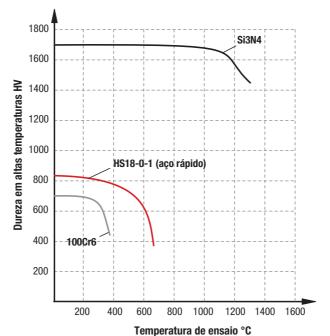
Rolamento com esferas de cerâmica

Mancais com rolamentos cerâmicos são adequados tanto para aplicações com meios de lubrificação como para funcionamento a seco, devido às suas qualidades de material. Com isso, eles são de aplicação ideal no setor de higiene, indústria de produtos alimentícios, farmacêuticos assim como para tecnologias assépticas, medicinais e de vácuo. Devido à sua estrutura aberta, os rolamentos de cerâmica são muito fáceis de limpar e insensíveis perante a utilização de aparelhos de limpeza de alta pressão. Graças às suas propriedades especiais podem ser instalados em autoclaves, pois quase não necessitam de manutenção especial, nem mesmo periódica.

Rolamentos de cerâmica oferecem maiores vantagens perante rolamentos metálicos:


- Extrema capacidade de rolamento, devido ao baixíssimo nível de atrito
- Exige pouca manutenção/praticamente livre de manutenção (a falta de lubrificante ou funcionamento a seco não causam problemas)
- Menor desgaste portanto maior durabilidade
- Redução de peso de 60%
- Resistência química altamente elevada
- Resistência à corrosão em geral e localizada
- Insensibilidade contra umidade
- Alta dureza e rigidez
- Nenhuma interação com campos magnéticos, pois não são magnetizáveis
- Alta resistência térmica; dependendo da versão até 1600°C

O material requisitado para rolamentos de cerâmica é o nitreto de silício (Si3N4), o qual é caracterizado por suas propriedades especias: leveza, alta rigidez e baixo desgaste. A alternativa mais econômica para este material é o óxido de zircônio (ZrO2). Além disso, ele possue a mesma capacidade de expansão térmica do aço, sendo de excelente aplicação em rolamentos híbridos.

Resistência química	Si3N4	ZrO2	X105CrMo17 (AISI 440C)	
Ácido clorídrico HCl (dil.)	+	+	-	
Ácido clorídrico HCl (conc.)	+	(+)	-	
Ácido nítrico HNO3 (dil.)	+	+	+	
Ácido nítrico HNO3 (conc.)	+	(+)	+	
Ácido sulfúrico H2SO4 (dil.)	+	+	-	
Ácido sulfúrico H2SO4 (conc.)	+	(+)	-	
Ácido fosfórico H3PO4	+	+	-	
Ácido fluorídrico HF	-	-	-	
Hidróxido de sódio NaOH-Lsg.	+	+	+	
Hidróxido de potássio.	+	+	+	
Cloreto de sódio NaCl	+	+	-	
Cloreto de potássio KCl	+	+	-	
Cloreto de cobre CuCl2	+	+	-	

Resistência química de materiais cerâmicos perante rolamentos de aço inoxidável martensítico de alta qualidade (AISI 440C)

Valores característicos de materi	al			Si3N4	Zr02	100Cr6
Densidade		ρ	g/cm³	3,2	5,9-6,4	7,85
Dureza	Н	V10	N/mm²	> 1700	> 1300	700
Módulo de elasticidade		Е	GPa	300	205	210
Coeficiente de expansão térmica		α	10 ⁻⁶ /K	3,2	10,2	11,5
Resistência flexural		$\sigma_{\!\scriptscriptstyle B}$	N/mm²	> 800	1000-1500	> 2500
Tenacidade à ruptura	IC	MPa	m _{1/2}	8	8-12	> 20
Condutibilidade térmica	Κλ		W/m \cdot K	30-35	2	40-45
Resistência elétrica específica	ρ		Ωm	10 ¹²	10 ⁹	10 ⁻⁷ -10 ⁻⁶
Granulação	d		μm	< 1	< 1	-

Dureza em temperaturas elevadas em comparação com o material do mancal de rolamento resistente ao calor

